Ho Koon Nature Education cum Astronomical Centre (Sponsored by Sik Sik Yuen)

Hong Kong Diploma of Secondary Education Examination Geography Field Studies Course



**Coast Study** 

Version 2.1

ESA 2.0

# A. Planning and Preparation

### Module

Managing Coastal Environments

## Enquiry Question

Enquiry Question 1 : *Does the coastal gradient keep consistent along the shore?* Hypothesis 2 : *The higher the wind speed, the farther the longshore drift displacement.* Hypothesis 3 : *The longer the distance from the backshore, the larger the size of load.* 

## Key Concepts

| Tide | Swash           | Backwash         | Constructive wave | Destructive wave |
|------|-----------------|------------------|-------------------|------------------|
| Load | Longshore drift | Coastal gradient | Coastal landform  | Sorting          |

### Scope of the Study

Lido Beach in Sham Tseng

# Time of the Study

| Date :                            |                           |                              |                         |
|-----------------------------------|---------------------------|------------------------------|-------------------------|
| Rainfall in the past 24-hour :    | mm                        |                              |                         |
| Browse the website of Hong Kong   | g Observatory, and record | d the tidal information of t | he selected field site. |
| a) High tides :                   | Time :                    | Height:                      | m                       |
| b) Low tides :                    | Time :                    | Height:                      | m                       |
| c) Tide level during field work : | Time :                    | Height :                     | m                       |

### Think About

1. Is this an appropriate time for conducting fieldwork? Explain your answer.

2. List the safety risks when conducting coastal fieldwork.

### **Field Work Plan**

1. In the field site, select a suitable location to set up a 12m transect by using the measuring tape.

#### **Coastal gradient**

- 1. By using abney level, ranging poles, level meters and measuring tape, measure the coastal gradient along the transect at every 1m interval.
- 2. Record the data in Table 1.1 and draw coastal profile of the field site in Figure 1.

### Think About

Suggest other equipment/methods to measure coastal gradient.

### Longshore drift

- 1. Throw the float provided into the sea near the shore.
- 2. Observe and measure the route and horizontal displacement of the float in 1 minute, and record them in Table 1.2.
- 3. At the same time, by using compass and anemometer, measure the maximum wind speed and wind direction in 1 minute.

#### Load size and shape

- 1. Using the swingometer, count the number and measure the maximum strength of the swash and backwash in 1 minute, and record them in Table 1.3.
- 2. Each group will be arranged to collect about 50g of surface load with a trowel and place them into a small plastic bottle.
- 3. Analysis of the load size and shape will be carried out in the laboratory, record them in Table 1.4.

### Laboratory work

- 1. Add 50g of the collected load, and hand it to the assistant teacher for drying in the oven.
- 2. After drying, pour the dried load onto the column of sieves provided. (Place the sieves in order, with a decreasing openings' diameter from top to bottom.)
- 3. Put the lid back on the column of sieves and hold them firmly with both hands. Shake the column horizontally and softly for 5 minutes.
- 4. Measure the net weigh of a crucible by using an electronic balance.
- 5. Measure the weight of the load from each sieve and pour them onto a piece of paper.
- 6. Use a 10 times magnifier to observe and compare the shape characteristics of the load at different location.
- 7. Calculate the percentages of each load size and record the data in Table 1.4.

# **B.** Data Collection

Complete the following table.

| Primary Data Items                          | To Examine<br>Hypothesis/<br>Enquiry<br>Question |   |   | Data C      | Equipment<br>Required<br>(Number on the<br>Equipment<br>Checklist) |           |  |
|---------------------------------------------|--------------------------------------------------|---|---|-------------|--------------------------------------------------------------------|-----------|--|
|                                             | 1                                                | 2 | 3 | Observation | Counting                                                           | Measuring |  |
| 1. Coastal gradient                         |                                                  |   |   |             |                                                                    |           |  |
| 2. Longshore drift displacement & direction |                                                  |   |   |             |                                                                    |           |  |
| 3. Wind speed & wind direction              |                                                  |   |   |             |                                                                    |           |  |
| 4. Swash & backwash                         |                                                  |   |   |             |                                                                    |           |  |
| 5. Load size & shape                        |                                                  |   |   |             |                                                                    |           |  |

# **Equipment Checklist**

| Items                            | Quantity | Checked | Returned |
|----------------------------------|----------|---------|----------|
| 1. Base map (Individual)         | x 1      |         |          |
| 2. Clipboard (Individual)        | x 1      |         |          |
| 3. Compass (Individual)          | x 1      |         |          |
| 4. Gloves                        | x 4      |         |          |
| 5. Measuring tap - 30m           | x 2      |         |          |
| 6. Level meter                   | x 2      |         |          |
| 7. Abney level                   | x 2      |         |          |
| 8. Ranging pole                  | x 2      |         |          |
| 9. Small sampling plastic bottle | x 1      |         |          |
| 10. Trowel                       | x 1      |         |          |
| 11. Anemometer                   | x 1      |         |          |
| 12. Float                        | x 2      |         |          |
| 13. Swingometer                  | x 1      |         |          |
| 14. Plastic bucket               | x 2      |         |          |

# Laboratory Work Equipment Checklist

| 1. Crucible | 2. Sieves | 3. Electronic balance | 4. Oven |
|-------------|-----------|-----------------------|---------|
|             |           |                       |         |

### Think About

Name the sampling method adopted in fieldwork, and list their advantages.

)

# Data Recording Sheet (Field Site: :

| 0-1m | 1-2m | 2-3m | 3-4m | 4-5m | 5-6m | 6-7m | 7-8m | 8-9m | 9-10m | 10-11m | 11-12m |
|------|------|------|------|------|------|------|------|------|-------|--------|--------|
|      |      |      |      |      |      |      |      |      |       |        |        |

### Table 1.1 - Coastal gradient

### Table 1.2 - Longshore drift

|                                                      | Float : | Float : |
|------------------------------------------------------|---------|---------|
| Wind direction (°)                                   |         |         |
| Wind speed (m/s)                                     |         |         |
| Direction of longshore dirft                         | Fromto  | Fromto  |
| Horizontal displacement of long-<br>shore drift (cm) |         |         |

## Table 1.3 - Swash & Backwash

| Number of Swash : / minute    | Number of Backwash : / minute    |
|-------------------------------|----------------------------------|
| Strength of Swash : (maximum) | Strength of Backwash : (maximum) |
| Swash : Stronger / Weaker     | Backwash : Stronger / Weaker     |

### Table 1.4 - Load size

| Sample from ( ) m   | Weight of<br>crucible (g)<br>(A) | Weight of crucible &<br>dried load (g)<br>(B) | Net weight of load<br>(g)<br>(B) – (A) | Percentage (%)<br>( <u>i) or (ii) or (iii)</u> x100%<br>(C) |
|---------------------|----------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------|
| Diameter >2mm       |                                  |                                               | (i)                                    |                                                             |
| Diameter >0.063-2mm |                                  |                                               | (ii)                                   |                                                             |
| Diameter <=0.063mm  |                                  |                                               | (iii)                                  |                                                             |
|                     | -                                | Total load (C)                                | (i+ii+iii)                             | 100%                                                        |

| Percentage (%)      | Summary : Load size |       |       |       |       |       |       |       |  |
|---------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Percentage (%)      | ( ) m               | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m |  |
| Diameter >2mm       | %                   | %     | %     | %     | %     | %     | %     | %     |  |
| Diameter >0.063-2mm | %                   | %     | %     | %     | %     | %     | %     | %     |  |
| Diameter <=0.063mm  | %                   | %     | %     | %     | %     | %     | %     | %     |  |

)

# Data Recording Sheet (Field Site: :

| 0-1m | 1-2m | 2-3m | 3-4m | 4-5m | 5-6m | 6-7m | 7-8m | 8-9m | 9-10m | 10-11m | 11-12m |
|------|------|------|------|------|------|------|------|------|-------|--------|--------|
|      |      |      |      |      |      |      |      |      |       |        |        |

### Table 1.1 - Coastal gradient

### Table 1.2 - Longshore drift

|                                                      | Float : | Float : |
|------------------------------------------------------|---------|---------|
| Wind direction (°)                                   |         |         |
| Wind speed (m/s)                                     |         |         |
| Direction of longshore dirft                         | Fromto  | Fromto  |
| Horizontal displacement of long-<br>shore drift (cm) |         |         |

## Table 1.3 - Swash & Backwash

| Number of Swash : / minute    | Number of Backwash : / minute    |  |  |
|-------------------------------|----------------------------------|--|--|
| Strength of Swash : (maximum) | Strength of Backwash : (maximum) |  |  |
| Swash : Stronger / Weaker     | Backwash : Stronger / Weaker     |  |  |

#### Table 1.4 - Load size

| Sample from ( ) m   | Weight of<br>crucible (g)<br>(A) | Weight of crucible &<br>dried load (g)<br>(B) | Net weight of load<br>(g)<br>(B) – (A) | Percentage (%)<br>(i) or (ii) or (iii)<br>(C) |
|---------------------|----------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|
| Diameter >2mm       |                                  |                                               | (i)                                    |                                               |
| Diameter >0.063-2mm |                                  |                                               | (ii)                                   |                                               |
| Diameter <=0.063mm  |                                  |                                               | (iii)                                  |                                               |
|                     |                                  | Total load (C)                                | (i+ii+iii)                             | 100%                                          |

| Paraantaga (%)      | Summary : Load size |       |       |       |       |       |       |       |
|---------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|
| rercentage (%)      | ( ) m               | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m | ( ) m |
| Diameter >2mm       | %                   | %     | %     | %     | %     | %     | %     | %     |
| Diameter >0.063-2mm | %                   | %     | %     | %     | %     | %     | %     | %     |
| Diameter <=0.063mm  | %                   | %     | %     | %     | %     | %     | %     | %     |

Hypothesis 2: \_\_\_\_\_

### Think About

List the possible errors when collecting data.

## C. Data Processing, Presentation and Analysis

Draw the most appropriate diagrams with graph paper, to show the data of Enquiry Question 1, Hypothesis 2 and 3.

Diagrams appropriate for showing the data include:

Enquiry Question 1: \_\_\_\_\_

Hypothesis 3 : \_\_\_\_\_

Figure 1 - Coastal Profile

### Think About

List the merits and demerits of the chosen diagrams.

## **D.** Interpretation and Conclusion

1. Use the collected information to respond Enquiry Question 1: "*Does the coastal gradient keep consistent along the shore?*"

Does the fieldwork result support the Hypothesis 2 : "The higher the wind speed, the farther the longshore drift displacement." Support your conclusion with the collected data and graph. (Extended question: What is the relationship between wind direction and longshore drift direction?)

Does the fieldwork result support the Hypothesis 3 : "The longer the distance from the backshore, the larger the size of load." Explain your conclusion with the collected data and graph. (Extended question: How do swash and backwash affect the deposition of loads along the shore?)

# E. Evaluation

1. Base on this fieldwork, suggest how to increase the reliability and validity of the data collection.

2. Suggest a fieldwork in Hong Kong with a theme of coast study, state clearly the hypothesis and data collection arrangement of the fieldwork.

