

Diploma of Secondary Education Geography Field Studies Course

Coast Study

Version 2.2

Objectives

- 1. To study the wave characteristics of the field site.
- 2. To study the coastal features of the field site.
- 3. To study the relationship between the water quality and the human activities at the field site.

Equipment List

Items	Quantity	Checked	Returned
1. Abney level	x1		٠
2. Base map (Individual)	x1	٠	٠
3. Clipboard (Individual)	x1	٠	
4. Compass (Individual)	x1		٠
5. Anemometer	x1		0
6. Gloves	x2		0
7. Measuring tap - 30m	x1		
8. Ranging pole	x4		
9. Level meter	x2		٠
10. Sampling bottle	x1		٠
11. Small plastic bottle	x1	٠	٠
12. Trowel	x1		٥
13. Plastic bucket	x2		٠

Equipment List (Laboratory Work)

1. Conical flask	5. Crucible
2. Beaker	6. Electronic balance
3. Salinity meter	7. Sieves
4. Dissolved oxygen meter	8. Electric Oven

Field Work

A1 Basic Information

1. Browse the web site of Hong Kong Observatory, and record the tidal information of the selected field site.

a) High tide: Time	Height	m
b) Low tide: Time	Height	m

A2 Setting Transect

- 1. Set up a 12 m long transect perpendicular to the shore, which best represents the beach profile.
- 2. Run 3 m of the transect into the sea and the rest along the profile to the backshore.

A3 Profile Gradient

- 1. By using the measuring tape, ranging poles and abney level, measure the gradient along the transect at every 1 m intervals (see Figure 7.1).
- 2. Record the data in Table 7.2 and draw the profile in Figure 7.2.

A4 Sediment Size and Shape

- 1. Select a site according to the instruction, collect about 50g surface sediment with trowel and a labelled plastic bag.
- 2. Analysis of the sediment size and shape will be carried out in the laboratory.

A5 Longshore Drift

- 1. With the compass and anemometer, measure the wind direction and wind speed for 1 minute.
- 2. Throw the bottle/ float provided into the sea near the shore.
- 3. Observe the route and horizontal displacement of the bottle/ float carefully for 1 minute, and record them in Table 7.3.

A6 Swash and Backwash

1. Count the number and observe the strength of swash and backwash in one minute and record them in Table 7.5.

Laboratory Work

B1 Sediment Size and Shape

- 1. Weigh 50 g of dried sediment by using electronic balance.
- 2. Pour the dried sediment onto a nested column of sieves provided. (The sieves should be placed in order with the openings diameter decreasing from top to bottom.)
- 3. Put the lid back on the column of sieves and hold them firmly with both hands. Shake the column horizontally and softly for 5 minutes.
- 4. Pour the sediment of each sieve onto a paper and weigh them with the electronic balance.
- 5. Record the data in Table 7.4 and calculate the percentages of each sediment size.
- 6. Use a 10 times magnifier to observe the shape of sediment.

B2 Dissolved Oxygen Test

- 1. Pour the water sample into a conical flask.
- 2. Put the probe of the Dissolved Oxygen meter into the conical flask.
- 3. Turn on the switch and wait for the reading.
- 4. Record the reading in Table 7.6.

B3 Salinity Test

1. By using a salinity meter, read the salinity reading and record it in Table 7.6.

	F	igure 7.2	

Table 7.2 - Profile Gradient

1	2	3	4	5	6	7	8	9	10	11	12

Figure 7.3 - Route of Longshore Drift (Annotated Diagram)

Wind Direction:	Wind Speed:	m/s
Direction of Longshore Dirft : From		
Horizontal displacement of Longshore Drift:	cm	

Table 7.4 - Sediment Size

Weight of Crucible	=g	
Total Weight of Sediment Sample a	and Crucible =g	
Diameter: > 2mm	Weight=g	Percentage=
Diameter: 2mm ~ >0.063mm	Weight=g	Percentage=
Diameter: <= 0.063mm	Weight=g	Percentage=

Table 7.5 - Number of Swash and Backwash

Number of Swash:/n	min Number o	of Backwash:/	min
--------------------	--------------	---------------	-----

Table 7.6 - Water Quality

Dissolved Oxygen: mg/L Salinity: ppt	mg/L Salinit	y: ppt
--------------------------------------	--------------	--------

Data Processing

- 1. Complete all the tables.
- 2. Use appropriate graphs and diagrams to present the data collected.

Discussion

1. [Describe the surrounding environment of the field site.
2. [Describe the human activities found in the field site and explain how they affect the water quality.
3. I	Explain how the geographical location and landform in the field site affecting the wave energy there.
	With reference to all findings, analyse how the wave energy affecting the beach characteristics of the field site.